Annales baccalauréat STI2D Logarithme

Exercice 1. Métropole, Antilles-Guyane 19 juin 2024

Lors d'un concert de musique rock organisé dans la ville de Venise, une scène flottante était placée à 120 m au large de la côte et donc des spectateurs du premier rang. Cette configuration particulière a posé des problèmes d'acoustique liés à l'atténuation différentielle du son émis par les différents instruments, notamment du fait de l'influence de la fréquence du son sur la directivité de l'émission par les haut-parleurs.

L'exercice propose de modéliser cette situation à partir de données expérimentales.

Données:

• Fréquences correspondant à certaines notes de musique :

Note	Do1	La1	Mi2	Ré3	Do4	Fa4	Si4
Fréquence (Hz)	65,4	110	165	294	523	698	988

• Le niveau sonore L (en dB) d'une onde sonore est relié à son intensité acoustique I (en W·m⁻²) par la relation :

$$L=10\log\frac{I}{I_0},$$

où $I_0 = 10^{-12} \text{ W.m}^2$ et log désigne le logarithme décimal.

[...]

On étudie mathématiquement le modèle obtenu en introduisant les fonctions f et g définies sur $[1; +\infty[$ par :

$$f(x) = 125 - 10\ln(x)$$
 et $g(x) = 117 - 7.5\ln(x)$.

Ces fonctions modélisent respectivement les niveaux sonores du La1 et du Fa4 en fonction de la distance.

Q5. Déterminer une expression de f'(x) où f' est la fonction dérivée de f sur $[1; +\infty[$.

On modifie désormais les réglages d'émission pour améliorer la qualité du son. Les expressions des nouvelles fonctions décrivant la dépendance de L_1 et L_2 avec la distance sont alors :

$$f_m(x) = 148 - 10\ln(x)$$
 et $g_m(x) = 136 - 7.5\ln(x)$,

respectivement, pour les notes La1 et Fa4.

Q6. Résoudre l'équation $f_m(x) = g_m(x)$ correspondant à 148–10 $\ln(x) = 136-7, 5 \ln(x)$ (arrondir le résultat à 10^{-1}).

En déduire la distance d_m des enceintes à laquelle doit se trouver le public pour que les deux notes aient le même niveau sonore.

Q7. Pour les réglages modifiés, calculer le niveau sonore du son reçu par les spectateurs à la distance d_m des enceintes pour chacune des notes.

Exercice 2. Métropole, Antilles-Guyane 20 mars 2023

Résoudre sur l'intervalle]0; $+\infty[$ l'équation :

$$\frac{2}{3\ln(10)}\ln(x) - 2,88 = 4.$$

Exercice 3. La Réunion 28 mars 2023

Simplifier l'écriture de l'expression suivante :

$$A(x) = -\ln(9) + 2\ln(3x).$$

Exercice 4. Métropole, Antilles-Guyane 12 septembre 2023

On considère un réel x, strictement positif et on note $\log(x) = \frac{\ln(x)}{\ln(10)}$.

Pour tout réel x, strictement positif, $\log(100x)$ est égal à :

A	В	С	D
10 <i>x</i>	100 log(<i>x</i>)	$2 + \log(x)$	$10 + \log(x)$

Exercice 5. Polynésie 4 mai 2022

On considère l'équation:

$$3\ln(x) - \ln(x+30) = 2\ln(5)$$
,

où *x* appartient à l'intervalle]0; $+\infty[$.

Donner, parmi les quatre propositions suivantes, la solution de cette équation.

a. 0

b. e^{-5}

c. 10

d. 20

Exercice 6. Métropole — La Réunion 11 mai 2022

1. Montrer, en détaillant vos calculs, que :

$$\ln(2025) = 4\ln(3) + 2\ln(5).$$

2. Simplifier le nombre *A* ci-dessous en détaillant les calculs :

$$A = 2\ln\left(e^4\right) - 3\ln\left(\frac{1}{e}\right).$$

Exercice 7. Métropole — La Réunion 11 mai 2022

Soit g la fonction définie sur l'intervalle]0; $+\infty[$ par :

$$g(x) = \frac{1}{2}x^2 - \ln(x).$$

1. On admet que g est dérivable sur l'intervalle]0; $+\infty[$ et on note g' sa fonction dérivée. Montrer que pour tout réel x de l'intervalle]0; $+\infty[$,

$$g'(x) = \frac{(x-1)(x+1)}{x}.$$

2. Montrer que la fonction g admet un minimum, dont on précisera la valeur exacte, sur l'intervalle]0; $+\infty[$.

Exercice 8. Centres étrangers 18 mai 2022

Résoudre dans]1 ; $+\infty$ [l'équation :

$$\ln(x-1) + \ln(x+1) + \ln(x) = \ln(x^2-1) - \ln(0,5).$$

Exercice 9. Métropole — Antilles-Guyane 8 septembre 2022

Lors d'une course, on a mesuré la fréquence cardiaque d'un coureur de 100 m. Cette fréquence cardiaque, en battements par minute, est modélisée par la fonction f définie sur [0;100] par $f(x) = 28 \ln(x+1) + 70$ où x est la distance parcourue, en mètre, depuis le départ de la course.

- 1. Selon ce modèle, quelle est la fréquence cardiaque de ce coureur au départ de la course?
- **2.** Selon ce modèle, au bout de combien de mètres la fréquence cardiaque de ce sportif est-elle égale à 185 battements par minute? Arrondir à l'unité.

Exercice 10. Métropole — La Réunion (candidats libres) juin 2021

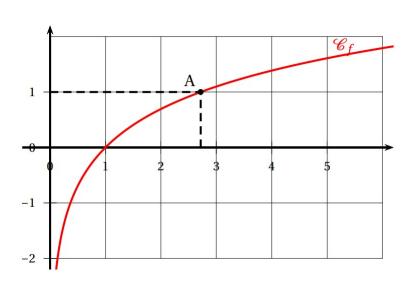
On a tracé dans le repère orthonormé ci-contre la courbe représentative \mathscr{C}_f de la fonction f définie sur]0; $+\infty[$ par :

$$f(x) = \ln(x)$$
.

On note A le point de \mathcal{C}_f de coordonnées (e; 1).

On note T la tangente à la courbe \mathcal{C}_f au point A.

La tangente *T* passe-t-elle par l'origine du repère? Justifier.



Exercice 11. Métropole — La Réunion (candidats libres) juin 2021

On considère la fonction f définie sur l'intervalle [0,5;10] par :

$$f(x) = x^2 - x - 2 - 3\ln(x).$$

On note f' la fonction dérivée de f.

- 1. Montrer que $f'(x) = \frac{(x+1)(2x-3)}{x}$ pour tout x appartenant à l'intervalle [0,5;10].
- **2.** Montrer que f admet un minimum sur l'intervalle [0,5;10] et préciser la valeur exacte de ce minimum.

Exercice 12. Métropole — La Réunion (candidats libres) septembre 2021

On considère la fonction h définie sur]0; $+\infty[$ par $h(x) = \ln(2x+1)$.

On désigne par \mathcal{C}_h sa courbe représentative dans un repère orthonormé d'origine O et d'unité graphique 1 cm.

On note M(x; y) un point de la courbe \mathcal{C}_h . On suppose que l'ordonnée y du point M est supérieure à 15 cm.

Vrai ou faux:

« L'abscisse x du point M se situe à plus de 16 km du point O. »

Corrigé

